Method Points
Towards a Metric for Method Complexity

Graham McLeod
University of Cape Town
Outline

- Methods Engineering
 - Definition
 - Objectives
 - Need for Complexity Metric
- Method Modeling
- Function Points
- Method Points
 - Graphic, Tabular and Textual Deliverables
 - Task Complexity
 - An example (I.E. vs UML)
- Suggestions for Future Work
Methods Engineering

The process whereby methodologists develop and enhance methods related to information systems in a disciplined way

"Method engineering is the coordinated and systematic approach to establishing work methods" - James O dell

Objectives

- Structured, repeatable process for practitioners
- Integration of techniques -> comprehensive approach -> broader problem
- Incorporation of more powerful/ sophisticated techniques
- Specification of capable model notation and representation

Difficulties

- Method success dependent upon fit to problem and
difficulty of becoming proficient in the use of method
- Complexity affects ease of use and quality of application
- BUT no published techniques to measure complexity of methods to make quantitative comparisons

Proposal

- Develop a metric along similar lines to function points for information systems
- Measure complexity via meta-data not size via deliverables

Method Points Graham McLeod
University of Cape Town June '97
Modeling Methods

McLeod Method Model

Product Facet Node Structure

- Product Name
- Parent
- Children
- Prerequisites
- Subsequents
- Representation
- Data Content
- Purpose
- Validation Rules
- Example
- Quality Standards
- Associated Tasks
- Associated Resources
- Permitted States
- Estimating Method
- Tool Support

Method Points Graham McLeod
University of Cape Town June '97
Function Points

Function Point Calculation

Context Diagram

Determine Raw FP Count

Inputs, Outputs, Queries, Interfaces

Main Files

Entity or Object Model

Determine Adjustment

Environmental Factors

Calculate Adjusted FP Count

Method Points Graham McLeod
University of Cape Town June '97
Method Points Process

- Express the method i.t.o. tasks, resources and deliverables
- Determine the counts for each type of deliverable
 - Graphic, Tabular, Textual
- Determine and add the count for task complexity

- Graphic Deliverables (weight)
 - Symbol types (1), Link types (.5), Embelishments (.5), Decomposition (.5, .5)
- Tabular Deliverables (Col .25, Embel .25, Decomp .5)
- Textual Deliverables (Sect .25, Pg .25, Hyperlink .5, Hierarchy .5)
- Compensate for Task Complexity
An Example: UML vs I.E.

Static Structure Diagram vs Entity Relationship Diagram
Use Case Diagram vs Context Diagram

Static Structure Diagram (Score: 16.5)
- Symbols: Class, Type, Template, Ternary Association (4)
- Link types: Interface, Imports, Binary Association, Generalisation, Dependency, Refinement (3)
- Embellishments: Bound Element, Utility Modifier, MetaClass Modifier, Pathname Modifier, Various on Associations, Details, Constraints, Derived Element, Navigation Expression (7)
- Decomposition (2.5)

ERM (Score: 4.5)
Example Continued

- Use Case Diagram (Score: 5.5)
 - Symbols: Actors, Use Case (2)
 - Link types: Communication, Extension, Uses, Refinement (2)
 - Embellishments: Boundary (.5)
 - Decomposition (1)

- Context Diagram (4)

- Findings and field validation
 - UML SSD considerably more complex than IE ERD
 - Use Case only somewhat more complex than Context
 - Practitioners very this
Further Work

- Complexity is one half of the story
- also need comprehensiveness
 - Lifecycle Coverage
 - Dimensions
 - Integration
- Adjustment for resource demands
- Uses
- Refinement of weights in the model
- Benchmark = 1 for I.E. improving with time
- Help me!
LiveM method

Anarchy Guided Dynamic Action Mortis

Rigor