
Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 1

An Advanced Meta-Meta Model for Visual Language Design
and Tooling

Targeting a Property Graph Implementation

Graham McLeod*,a
a Inspired.org | Univ. Duisberg-Essen

Abstract. Visual Languages are widely employed in Enterprise Modelling. Our broader research aims to
improve visual language design and facilitate rapid adaptation for specific purposes and audiences with a
view to improving Return on Modelling Effort (ROME). Most current repositories and tools have hard coded
support for notations and meta model concepts of target languages. A small number of tools have facilities
to adapt meta models and notations, but these generally require high technical skills. The model described
allows definition of arbitrary meta models and supporting notations in a relatively small meta meta model
that can be practically implemented economically using property graph concepts. The model supports
advanced concepts, including multi-level modelling. These capabilities facilitate tooling which supports
rapid visual language definition, iterative improvement and run-time adaptation for purpose or audience.

Keywords. Meta-Meta Model • Visual Language •Modelling Tools • Return on Modelling Effort

1 Introduction
Visual Languages are widely used in Enterprise
Modelling to understand, communicate and de-
sign various aspects of (inter alia) organisations,
capabilities, functions, services, processes, op-
erating models, motivations and information re-
quirements e.g.Multi-Perspective Enterprise Mod-
eling (MEMO) [Frank 2002], Archimate [Various
2019], Business Process Modelling and Notation
(BPMN) [Rosing et al. 2015]. They are alsowidely
used in Information Systems to understand, com-
municate and design system context, process, data,
user interaction, system design and other aspects
e.g. Unified Modelling Language (UML) [Rayner
et al. 2005], Entity Relationship Diagrams (ERD)
[Chen 1976] and Data Flow Diagrams (DFD)
[Ward 1986].
Prior research has identified that visual lan-

guages are often not optimal in terms of their
ability to accurately convey information in the

* Corresponding author.
E-mail. graham@inspired.org

best form for the target stakeholder and purpose
[Moody 2009]. Ware [Ware 2010] shows how
poor most artifacts are at leveraging the human
visual system. Bertin [Bertin 1983] highlights
the limits of encoding information onto notations.
Problems can include:

P1: Mismatch between concepts offered and mod-
elling requirements. This leads users of lan-
guages to improvise and use provided con-
cepts and symbols for other meaning and
purposes, thereby harming communication
and destroying standardisation

P2: Meta Models which do not support multi-
level modelling required for advanced / accu-
rate modelling, leading to models which do
not properly capture the real world subtleties.
This, in turn, leads to inflexible or frustrating
systems that expect the world to conform to
them [Frank 2014], [Clark andWillans 2014].

P3: Notations which are ill-suited to the orien-
tation and experience of the stakeholders.

graham@inspired.org


International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

2 Graham McLeod

Business personnel are confused by highly
technical notations. Some models may lack
the precision to properly capture important de-
tails for design or implementation. Notations
may be difficult to use in facilitated sessions
where they would be most effective from a
group dynamic and consensus perspective.
[Puhlmann 2019]

P4: Models which do not make important infor-
mation easy to perceive. We term these "cam-
ouflage models" - a great deal of information
is presented but insufficiently distinguished
to show what is important [BIAN.org 2022]

P5: Notations which do not properly exploit hu-
man visual and cognitive abilities. Visual
cues, colour, edges and other mechanisms
are vital in creating an effective notation, but
these are often ignored by language designers
who use whatever is on the stencil or in the
tool palette. [Bertin 1983; Moody 2009]

To address these shortcomings, we are engaged in
research which includes the following Goals:

G1: Support rich meta modelling / ontology defi-
nition which allows fully expressing concepts
of the domain accurately

G2: Support definition of notations which are
appropriate to the domain concept, the stake-
holders who will work with them and the
purpose of the modelling

G3: Support rapid/iterative evolution of the meta
model and visual language to continually
improve effectiveness

G4: Support run time tailoring of models, meta
model, visual language and tool user interface
to support unique requirements ("moldable
tools", in the spirit of: [Chiş et al. 2015])

G5: Permit multiple representations for the same
semantic models, addressing the needs of dif-
ferent stakeholders and catering for multiple
visual languages / methods

G6: As far as possible, achieve an economical
implementation of the above capabilities to
facilitate implementation of supporting tool-
ing at reasonable effort / cost.

The remainder of this paper discusses require-
ments to be met to address the goals listed, sources
of information and ideas from prior work, limi-
tations of some current implementations and the
resultant meta-meta model which excludes user
model management and technology adaptation
elements (for brevity). It concludes with remarks
on remaining challenges and future plans.

2 Broad Requirements

Achieving the goals above requires that we un-
derstand who the stakeholders are, what their
concerns are, what questions they want to answer
and what the relevant concepts are in their do-
main. The latter should be expressed in a domain
semantic model or ontology which includes the
definition of concepts, properties which describe
instances of these, and relationships which are
legal between instances.
We also need a model that describes the visual

language (aka "concrete syntax") which will be
used to represent the concepts and relationships in
a form that ismost useful to particular stakeholders.
This should include the model types, symbols and
notation conventions that will apply and how these
relate to the semantic model. Note that multiple
representations should be possible for the same
semantic model to meet the needs of different
stakeholders or purposes. The meta meta model
components are illustrated in Figure 1.

3 Detailed Requirements

More detailed requirements should address the
stated shortcomings of current approaches as well
as facilitating achievement of the Goals enumer-
ated. These include:

R1: Multi-level modelling must be accommo-
dated to support advanced modelling and
to economise on tool size by allowing similar



Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 3

Figure 1: Meta Model Components

tools to be used on multiple levels as well as
support the runtime extension of the domain
model/ontology. See [Lara et al. 2014] for a
discussion of why and how to use multi-level
approach

R2: High level of abstraction to achieve efficiency
in model type definitions and agility in chang-
ing them when required. This implies a
declarative versus procedural solution and
prefers configuration over code. [Däcker and
Williams 1997, Hartmann and Both 2009]
provide evidence for power of abstraction in
software and modelling

R3: Support for n-ary relationships and relation-
ship properties. These are necessary to sup-
port some types of modelling e.g. [Chen
1976]

R4: Cater for rich data types, provided by the
implementation environment, tool classes
developed in the implementation language
and structures created by users themselves
through model definition. We have found this
invaluable in our earlier work in the imple-
mentation of the EVA Toolset [Inspired.org
2022]

R5: Allow extension of the meta model and nota-
tion at run time

R6: Support a rich variety of diagram types and
notations as well as facilitate other types of

output (e.g. lists, reports, composed docu-
ments, matrices, graphs, visualisations)

R7: Support modelling the sequence and group-
ing required of items

R8: Support definition of validation, constraints,
derivation through configurable rules/meth-
ods

R9: Provide for documentation of modelling lan-
guage and evolution/versioning

R10: Support management of collections of things
for retrieval in queries, reports and tooling

4 Relevant Sources and Prior Work

Tools and approaches were chosen for examination
based upon team experience and their potential
match to the stated requirements. In some cases
they were used as a "sanity check" on develop-
ing concepts and to provide inspiration for how
relevant challenges had been addressed by other
authors and software engineers. Collectively they
represent many decades of applied experience.

4.1 Enterprise Value Architect
The Enterprise Value Architect (EVA) repository
and toolset [Inspired.org 2022] has evolved over
two decades to address the needs of enterprise
modelling, visual modelling and a variety of other
requirements in support of strategy, enterprise
architecture and information systems work. It has



International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

4 Graham McLeod

the ability to define a meta model through the
web user interface or Graphical Modeller. The
meta model is used to customise user interface
patterns (at runtime) so that maintenance, navi-
gation and reporting functions are immediately
available [McLeod 2001].
Graphical notations include both raster images

held as files and vector symbols held as definitions
in the tool, in a Logo-like language [Solomon
et al. 2020] embedded in XML1 . Symbols are
associated with a model type which links them to
the types they represent in the domain, which are
defined in the meta model.
Positive things in the architecture which we

wish to emulate include:

EVA+1: Meta Model held as data in repository
and user modifiable

EVA+2: Notation held as data/code in repository
and user modifiable

EVA+3: Management of Model Types, Symbols,
Models

EVA+4: Web user interface customised by meta
model

EVA+5: Graphical Modeller editor customised
by meta model, model type and symbol
definitions

EVA+6: Rich data types allow quick definition
of sophisticated structures for domain
types

EVA+7: Relationships are named semantically
(and in both directions), are first class
objects and can have properties

EVA+8: Calculated properties allow derived val-
ues and inferencing in models

EVA+9: Ordering and Grouping of item display
lists is configurable at Meta Level

1 eXtensible Markup Language

EVA+10: Spatial layout of items within a gener-
ated model can be defined at meta level
between types

EVA+11: Advanced features in the GraphicalMod-
eler to allow rapid construction of mod-
els by dropping in relationships and
items for focus object; also to hide se-
lected types to automatically simplify
models for display purposes

EVA+12: Many alternate representations are pro-
vided for sharing information, includ-
ing: forms, reports, matrices, tables,
graphs, composed documents, visual-
isations, rich pictures, canvasses and
graphical models

EVA+13: Multi-user, SaaS2 model, easy deploy-
ment

EVA+14: Repository, user, security and tool envi-
ronment utilities

EVA+15: Product architecture works at meta level,
which results in small code base which
allows extension of capability through
modelling, without coding

EVA+16: Pluggable architecture and use of data
standards (XML, CSV3 , JSON4 ) and
standard protocols (HTML5 , XMLMes-
saging, REST6 ) allows easy integration
with other tools

Limitations of the EVA architecture

EVA-1: Meta Model does not support gener-
alise/specialise relationships fully

EVA-2: Relationship behaviour is not differenti-
ated, except in tool logic (e.g. handling
of hierarchies)

EVA-3: Default values held in an instance record
2 Software as a Service
3 Comma Separated Variable
4 Javascript Object Notation
5 Hypertext Markup Language
6 Resource State Transfer



Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 5

EVA-4: Meta Model does not support Role mod-
elling

EVA-5: Not able to define multiple instances of
the same relationship type between items

EVA-6: Constraints are not formally defined in
the meta model (e.g. cardinalities)

EVA-7: Meta Model is not partitioned into lan-
guages or associated with stakeholder
types (except through security model and
menus). Domains do allow partitioning
meta model but do not provide name-
spaces to prevent naming conflicts

EVA-8: compound user defined properties are not
supported

EVA-9: Symbol definition language has limita-
tions

EVA-10: Configuration of UI presentation is done
via Meta Model and at instance level

EVA-11: Performance is limited by the mapping
of logical layer to relational persistence

4.2 Eclipse Modelling Platform
The Eclipse environment [Eclipse Foundation
2022] is widely used in computer science and in-
formation system communities to implement tools
for various visual languages. It is based upon the
Eclipse Modeling Framework (EMF) which uses
the Ecore meta model. The latter has a fairly close
relationship to the Unified Modeling Language
(UML) and the Java programming language. It
is relatively easy to create tools in Eclipse which
adhere to the philosophy of these paradigms. If
modelling constructs are required that fall outside
these, things become much more difficult and Java
programming is generally required.
Positive aspects of the Eclipse Environment

E+1: Stable and well supported

E+2: Supports code editing for various languages
and can be configured for DSLs

E+3: Open Source

E+4: Many plug ins and extensions available

E+5: Generated modellers can have good perfor-
mance

E+6: Large community

Limitations of the Eclipse environment

E-1: Language implementation requires program-
ming skills

E-2: Meta Model is based on EMOF7 , which has
many known limitations [Frank 2011, Clark
2020]

E-3: Tooling is desktop and requires Java runtime
(Note: Eclipse Theia is a project to allow us-
ing Eclipse Framework to create web based
tools, but these still rely on a Java back end
server)

E-4: User Interface is crowded and unfriendly for
non-technical users

E-5: Does not support creation of other user
oriented output types (reports, documents,
posters etc. )

E-6: Based upon a code generation approach and
static bound language, therefor not runtime
extensible

E-7: Models stored in text files rather than repos-
itory

4.3 Meta Edit+
MetaEdit+ is an advanced tool environment for
building domain specific modelling language
(DSML) tools [Kelly and Tolvanen 2021]. It
comprises a Workbench for defining a domain
model and associated visual language which gen-
erates a tool definition for the DSML. The latter
drives a Modeller which provides the end user
modelling environment.

7 Essential Meta Object Facility



International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

6 Graham McLeod

The tool is highly effective and is widely used
in industry to support various kinds of DSML,
for example in manufacture of cars and electronic
goods. It has a graphical meta modelling lan-
guage, dubbed GOPPRR8 , designed specifically
for the definition of domain models and graphical
modelling languages. It is a DSM language for
defining languages!
Positive Aspects of MetaEdit+

M+1: Purpose built and highly effective

M+2: Good meta modelling approach to defining
visual language including graphical editor

M+3: Robust and industry proven

M+4: Multi user for modelling tool (not Work-
bench)

M+5: Model transformation facilities

M+6: API for integration

M+7: Well supported

Negative Aspects of MetaEdit+

M-1: Separate environments for language defini-
tion and model use

M-2: Generation paradigm inhibits rapid lan-
guage evolution

M-3: Proprietary

M-4: Available on limited platforms

M-5: Multi-level modelling not supported

M-6: Models stored in proprietary object
database

8 Graph Object Property Port Role Relationship

4.4 XModeler
XModeler is an advanced and capable meta mod-
elling platform targeted at development of infor-
mation systems languages and Domain Specific
Languages (DSLs). It has its own very compact
meta meta model and language for defining meta
models. It was developed primarily by Tony Clark
[Clark and Willans 2014,Clark 2020].
Positive aspects of XModeler

X+1: Competent and extensible

X+2: Caters for multi-level modelling

X+3: Well defined meta model exploiting object
technology

Negative aspects of Xmodeler

X-1: Proprietary Language for definition of mod-
els and behaviour

X-2: Limited user community and high learning
curve

X-3: More targeted at definition of languages for
execution than (esp) business level visual
languages

X-4: Not multi-user or web oriented

4.5 Semantic Models
The Resource Description Framework (RDF) from
World Wide Web Consortium (W3C) defined as
part of the Semantic Web initiative, provides a
deceptively simple language for describing se-
mantic knowledge [W3C 2022]. RDF uses the
concepts of "triples" which are facts stated in the
form [Subject]->[Predicate]->[Object]. Examples
would include:

John knows Alice
John salary 10000
Alice is a Person

A few things are important to observe in the pre-
ceding example. The knows in the first statement
is a semantic relationship between two objects,



Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 7

John and Alice. The salary in the second state-
ment points to a literal value of the salary for John.
The is a in the third statement indicates that Alice
belongs to the Person set or class of things. These
simple statements therefor include:

1. Relationships between Objects

2. Properties for an Object

3. Values for Properties

4. Typing of an Object

RDF can be serialised in various textual notations
for exchange between systems, transmission over
networks and persistence in databases and files.
RDF is a logical way of describing types and
objects and facts about them. It does not, on its
own, providemuch in the way of typemanagement
or validation.
If we want to constrain relationships or values

or set membership, then we need to use languages
built on RDF such as DAML-OIL [McGuinness
et al. 2002]. These provide schema facilities and
ability to define constraints. To go further, we
could use the Web Ontology Language (OWL)
[Motik et al. 2009] which would also allow us
to create rules and do inferencing. E.g. We
could define a French alias for the concept of
salary which would allow us to merge French and
English data sets meaningfully.
RDF uses URIs9 to identify facts, making them

addressable on the Internet, thus supporting large
distributed knowledge bases. RDF can be stored
in semantic stores / triple stores which provide
efficient access mechanisms including indexing,
caching andmemorymanagement to manage large
semantic knowledge bases. They are generally
good at ingesting, connecting and querying large
volumes of facts which are richly related. They are
generally not as optimised for data which needs
high integrity, ACID transactions and which may
be updated frequently. ACID transactions imply
Atomicity, Consistency, Integrity and Durability.
Popular triple stores supporting RDF data include:

9 Uniform Resource Identifiers

Ontotext GraphDB,Allegrograph, Blazegraph and
Stardog [Besta et al. 2019]

4.6 Property Graphs

Property graphs are similar conceptually to seman-
tic graphs and RDF, but differ inthat items with
identity (nodes) can have properties stored within
the node. This reduces the number of objects in
graphs and improves performance. It also allows
easier implementation of transaction behaviour
and facilitates efficient updates. Property graphs
typically make use of internally generated item
identities, or user provided ones. Property graph
systems are gaining ground rapidly in production
applications needing a blend of features normally
found in relational systems, plus the ability to deal
with rich relationships and large knowledge bases
with many complex relationships. Popular sys-
tems include Neo4J, AllegroGraph and DGraph
[Fernandes and Bernardino 2018].

5 Design Choices

5.1 User and Value First

We adopt an approach where stakeholders, con-
cerns, goals and relevant concepts andmodel types
to address these are taken as the first point of de-
parture. We then apply features and capabilities
of meta models and tools to address these in (first)
an effective manner and then (second) an efficient
manner.

5.2 Multiple Languages and Notations

• A single semantic model may be represented in
multiple visual languages

• A single logical model may be represented in
multiple visual languages

• We should also anticipate other output forms,
including: Forms, Lists, Tables, Matrices, Re-
ports, Composed Documents.



International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

8 Graham McLeod

5.3 Rich Properties
These are properties beyond the typical program-
ming language data types. Their handling requires
several approaches:

• Composite Properties - e.g. Address. These can
be defined as a Concept which can be re-used
in the role of a PropertyType

• Logical Data Types: These can be defined
in implementation of tooling as classes with
special behaviour (e.g. compress, decompress,
scale, render etc.). They should all permit
serialisation to strings or streams for persistence
and transmission

• Physical Properties will be handled by imple-
mentation language classes or tool defined
classes NOTE: Compressed in meta models
shown later to save space and limit complexity

5.4 Logical vs Physical Models
We explicitly model logical vs physical models.
The former is a container for semantic information
(types, relationships, properties, values) while the
latter provides for visualisation (symbols, lines,
other visual artefacts). This facilitates separation
of concern and allows multiple physical represen-
tations of the same semantic information.

5.5 Relationships
1. Unlike the approach of Clark where relation-
ships are held as properties on related objects,
we follow a similar approach to Frank where
relationships are first class citizens. This is to
accommodate n-ary relationships, to support
relationship properties and to map more cleanly
to graph models. We also want to explicitly
support semantic relationships and reusable be-
haviours for higher level abstractions of kinds
of relationships.

2. n-ary support is enabled by having relationships
which can reference multiple related items

3. Reusable Semantics - provide consistency in
naming and translation to user language and
text

4. Reusable Behaviours - provide extensible re-
lationship types beyond the UML association,
generalise/specialise, containment. E.g. Roles,
Taxonomy For, Dependency, Sequence

5. Support relationship properties e.g. proper-
ties for the relationship enroll between Student
and Course might include Date and payment-
Received

5.6 Dynamic Meta Model
Frank prefers a static Meta Model while Clark ad-
vocates a dynamic one. We favour the latter, since
we aim to provide moldable behaviours at runtime.
Model elements can thus have behaviours (meth-
ods/functions). Currently these may be associated
with any identity-carrying element in the system.

5.7 Multi-Level Modelling
The design must cater for multiple levels of def-
inition and instances, without constraint. Some
authors, e.g. Frank, have adopted a model which
relies upon "potency", annotating attributes of
types/classes to indicate at what level they should
be instantiated. We find this restrictive and awk-
ward to implement. We have adopted a meta
circular approach more like that pioneered by
Clark. We have adapted this further to leverage
the concept of graphs and ideas from RDF and
Property Graphs. This will be elaborated in the
discussion of the meta meta model following.

5.8 Polymetric Diagramming
This is an approach introduced by Lanza [Lanza
2003] in providing rich visualizations of software
systems. The idea is to use a graphical notation and
modify aspects of the visual symbols based upon
underlying properties of the objects represented.
E.g. A box might represent a class. Its height may
be calculated based upon the number of methods
while the width may represent the number of
instance variables. Colour might be determined
by the number of other classes which rely upon it,
etc. In this way visual cues enhance the value of
models and their ability to rapidly identify things
of interest to stakeholders. We aim to support



Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 9

polymetric models in the visual representation
layer.

5.9 Moldable Tools
This is an approach introduced by Tudor Girba
[Chiş et al. 2015] whereby features are provided
in tools to create new views, visualisations and
workflows at runtime to facilitate interactive and
highly effective problem solving. We adopt several
of these ideas. The longer term goal is for user
interfaces themselves to be models which users
can adjust.

5.10 Reuse of Properties
Emulating the approach in EVA we define named
properties independently of their inclusion in defi-
nition of Concepts (types). This facilitates consis-
tency in naming and semantics.

6 Meta Meta Model
6.1 Notation
The meta model is shown using a notation derived
from the UML and additional options offered by
PlantUML[Open_Source 2022]. Packages are
shown as tabbed containers. Classes as multi
compartment boxes and relationships as lines.
Line styles are as follows:

• Subclass –|> Superclass (inheritance; spe-
cialised form to generic form)

• ClassA <>—< ClassB (ClassA contains in-
stances of ClassB)

• ClassA - - -< ClassB (ClassB objects are logical
instances of ClassA)

• ClassA []— ClassB (ClassA is a role of ClassB.
Roles follow the approach of James Odell [Mar-
tin and Odell 1997].

Figure 2: Generic Fragment



International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

10 Graham McLeod

• Crows feet are used to indicate zero or many

• Omission of crows foot or a cardinality at a re-
lationship end implies "1". A specified number
(e.g. "n" meaning many, can override this)

• Inheritance lines to NamedThing have been
shown in light gray to visually simplify the
diagram.

• Some subclasses have been shown within the
superclass to simplify the diagram and save
space.

The full diagram has been broken into fragments,
represented as Packages, to accommodate space
constraints in the paper. We will discuss each

fragment in turn. Each figure will show the pack-
age containing the fragment concepts and other
concepts directly referenced in adjacent packages.

6.2 Generic Elements
This fragment contains a few abstractions and
generically required items. Refer to Figure 2.
NamedThing allows inheritance of identity, de-
scription, status, version, time stamp and (where
applicable) example instances. Many classes in the
meta model are derived from it. Alias and Natural-
Language allow defining alternate names for most
things in the system, including in other human
languages. Scope is a mechanism to group things
of interest (e.g. Domain of Concepts, Namespace
of Objects, Package for export etc). Rule is a
place to keep behaviour/methods related to any

Figure 3: Stakeholder Fragment



Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 11

relevant named object. It allows implementing
validation, constraints, derivation of values, layout
algorithms etc.

6.3 Stakeholder and Purpose Fragment
This allows us to link types of stakeholders, their
concerns and questions to domains, concepts and
appropriate modelling languages and model types.
Refer to Figure 3.

6.4 Semantic Fragment
This is the core of the meta meta model and
holds the definitions of concepts, properties, rela-
tionships representing the semantics of domains.
Refer to Figure 4. Given that we aim to sup-
port multi-level modelling, it must be capable of
holding instances as well as definitional elements.
The fundamental conceptual model is based upon
a property graph with nodes, edges and targets.
Nodes can be Concepts or Items. Edges link
nodes. They have Targets which can be a Node,
a PropertyValue or a PropertyType. There are
several important innovations:

I1: Whether something is treated as a Concept or
an Item depends upon whether it has instances
or not. An Item can become a Concept by
having Items as instancces or any edge whose
target is a PropertyType

I2: Concepts can have values, which can be in-
herited by other Concepts. This is similar to
the principles in Smalltalk Class Definition
[Goldberg and Robson 1983]

I3: Concepts can access a collection of their Items.
Unlike object oriented languages where all
instances returns only those for the subtype,
we return all instances of the selected type and
any of its subtypes. This is more in line with
ontology and set modelling. E.g. Returning
all instances of Person would return all Per-
sons including subclasses such as Professional
and Pensioner

I4: PropertyTypes can be a development language
class, an implementation class or a user de-
fined Concept

I5: A dictionary is constructed of NamedProp-
erty instances. This gives a semantic to a
data element. E.g. the PropertyType may
be Integer, but the named element could be
Number-of-Employees. The NamedProperty
can be associated with a Concept, where it be-
comes a LegalProperty. It will normally have
the same name there, but may mean some-
thing different. E.g. Number-of-Employees
may be used on Company and Department.

I6: Actual Items hold PropertyValue objects
which contain the values of LegalProperties.
To accommodate multi-level modelling, a
PropertyValue may be a literal value or a
PropertyType.

I7: RelationshipType represents an abstraction
for different relationship behaviours, which
will include inter alia: association, subtype-
>supertype, hierarchy, containment, role, in-
stances, dependency, taxonomy. The latter al-
lows using elements of one Concept to group
instances of another: E.g. Employee could be
grouped by Department instances

I8: SemanticRelationship gives a semantic to re-
lationship types. E.g. a role RelationshipType
may be used as a can be used as SemanticRe-
lationship

I9: LegalRelationship applies a SemanticRela-
tionship between related Concepts. At the
instance level, it is instantiated as an actual
Relationship between Items

6.5 Visual Representation Fragment
This is the layer in which we hold all information
regarding the concrete syntax (graphical presen-
tation). Consider Figure 5. PhysicalModelType
defines a representation for a LogicalModelType.
It has various subclasses (for space reasons con-
tained within the class symbol). For graphical
models (Diagram), it will map Concepts to Nota-
tionElements which are Vector or Raster Symbols.
It is instantiated by rendering a LogicalModel
according to the mapping, possibly with a layout



International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

12 Graham McLeod

Figure 4: Semantic Fragment



Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 13

Figure 5: Visual Representation Fragment

specification, which would be a rule attached to
the PhysicalModelType.
The PhysicalModel will hold actual symbols

(including sizes, positions, layers) and edges (in-
cluding path and vertices). At the implementation
level, these details may be serialised to text (e.g.

JSON or XML at the PhysicalModel level). Mul-
tiple PhysicalModels of the same PhysicalMod-
elType can be present for a single LogicalModel.
This can facilitate modifications at the instance
level to highlight important features, modify layout
etc.



International Journal of Conceptual Modeling
Vol. 0, No. 0 (month 0000).

14 Graham McLeod

7 Reflection

Various versions of the meta model have been
implemented in prototypes and proof of concept
tools during its gestation over the past three years.
They show much promise and issues raised during
these exercises have been addressed in the model
presented. Earlier versions were based upon ob-
ject technology and did not cater for multi-level
modelling.
This is the first iteration to explicitly address

this in a serious way, although it was achievable
to a limited extent in earlier versions. We are
currently engaged in early implementation with a
Property Graph system and will refine the model
based upon this experience. We are keen to hear
of other researchers working on similar problems
and collaborate where appropriate.

References

Bertin J. (1983) Semiology of graphics. University
of Wisconsin press

Besta M., Peter E., Gerstenberger R., Fischer M.,
Podstawski M., Barthels C., Alonso G., Hoefler
T. (2019) Demystifying graph databases: Anal-
ysis and taxonomy of data organization, system
designs, and graph queries. In: arXiv preprint
arXiv:1910.09017

BIAN.org (2022) BIAN Banking Service Land-
scape 10 https://bian.org/servicelandscape-10-0-
0/views/view_51974.html Last Access: 2022-05-
02

Chen P. P.-S. (1976) The entity-relationship
model—toward a unified view of data. In: ACM
transactions on database systems (TODS) 1(1),
pp. 9–36

Chiş A., Nierstrasz O., Gırba T. (2015) Towards
moldable development tools. In: Proceedings of
the 6th Workshop on Evaluation and Usability of
Programming Languages and Tools, pp. 25–26

Clark T. (2020) A Meta-Circular Basis for Model-
Based Language Engineering.. In: The Journal of
Object Technology 19(3), 3:1

Clark T., Willans J. (2014) Software language
engineering with XMF and XModeler. In: Com-
putational Linguistics: Concepts, Methodologies,
Tools, and Applications. IGI Global, pp. 866–896

Däcker B. O., Williams M. C. (1997) Break-
through in software design productivity through
the use of declarative programming. In: Interna-
tional journal of production economics 52(1-2),
pp. 227–231

Eclipse Foundation. https://www.eclipse.org. Last
Access: Accessed: 2022Q3

Fernandes D., Bernardino J. (2018) Graph
Databases Comparison: AllegroGraph,
ArangoDB, InfiniteGraph, Neo4J, and Ori-
entDB.. In: Data, pp. 373–380

Frank U. (2002)Multi-perspective enterprise mod-
eling (memo) conceptual framework and model-
ing languages. In: Proceedings of the 35th Annual
Hawaii International Conference on System Sci-
ences. IEEE, pp. 1258–1267

Frank U. (2011) The MEMO meta modelling
language (MML) and language architecture.. ICB-
research report

Frank U. (2014)Multilevel modeling. In: Business
& Information Systems Engineering 6(6), pp. 319–
337

Goldberg A., Robson D. (1983) Smalltalk-80: the
language and its implementation. Addison-Wesley
Longman Publishing Co., Inc.

Hartmann U., von Both P. (2009) A declarative
approach to cross-domainmodel analysis. In:Man-
aging It in Construction/Managing Construction
for Tomorrow 26, pp. 45–51

Inspired.org (2022) Enterprise Value Architect
https://www.inspired.org/eva-home Last Access:
2022-05-02

Kelly S., Tolvanen J.-P. (2021) Collaborative mod-
elling and metamodelling with MetaEdit+. In:
2021 ACM/IEEE International Conference on
Model Driven Engineering Languages and Sys-
tems Companion (MODELS-C). IEEE, pp. 27–
34

https://bian.org/servicelandscape-10-0-0/views/view_51974.html
https://bian.org/servicelandscape-10-0-0/views/view_51974.html
https://www.eclipse.org
https://www.inspired.org/eva-home


Enterprise Modelling and Information Systems Architectures
Vol. 0, No. 0 (month 0000).
An Advanced Meta-Meta Model for Visual Language Design and Tooling 15

Lanza M. (2003) Object-Oriented Reverse Engi-
neering Coarse-grained, Fine-grained, and Evolu-
tionary Software Visualization. In:

Lara J. D., Guerra E., Cuadrado J. S. (2014)
When and how to use multilevel modelling. In:
ACM Transactions on Software Engineering and
Methodology (TOSEM) 24(2), pp. 1–46

Martin J., Odell J. J. (1997) Object-oriented meth-
ods (UML ed., ) a foundation. Prentice-Hall, Inc.

McGuinness D. L., Fikes R., Hendler J., Stein L. A.
(2002) DAML+ OIL: an ontology language for
the Semantic Web. In: IEEE Intelligent Systems
17(5), pp. 72–80

McLeod G. (2001) PAMELA: A Proto-pattern for
Rapidly Delivered, Runtime Extensible Systems.
In: Evaluation of Modeling Methods for Systems
Analysis and Design (EMMSAD) 1

Moody D. (2009) The “physics” of notations:
toward a scientific basis for constructing visual
notations in software engineering. In: IEEE Trans-
actions on software engineering 35(6), pp. 756–
779

Motik B., Patel-Schneider P. F., Parsia B., Bock C.,
Fokoue A., Haase P., Hoekstra R., Horrocks I.,
Ruttenberg A., Sattler U., et al. (2009) OWL 2web
ontology language: Structural specification and
functional-style syntax. In: W3C recommendation
27(65), p. 159

Open_Source (2022) Drawing UML with Plan-
tUML PlantUML Language Reference Guide
https://plantuml.com/guide Last Access: 2022-
05-02

Puhlmann F. (2019) BPMN 2.0 Wimmelbild Edi-
tion http://frapu.de/pdf/BPMN20-Wimmelbild.pdf
Last Access: 2022-05-02

Rayner M., Hockey B. A., Chatzichrisafis N., Far-
rell K. (2005) OMG Unified Modeling Language
Specification. In: Version 1.3, © 1999 Object
Management Group, Inc

von Rosing M., White S., Cummins F., de Man
H. (2015) Business Process Model and Notation-
BPMN.

Solomon C., Harvey B., Kahn K., Lieberman H.,
Miller M. L., Minsky M., Papert A., Silverman
B. (2020) History of logo. In: Proceedings of
the ACM on Programming Languages 4(HOPL),
pp. 1–66

Various (2019) Archimate 3.1 Specification. The
Open Group Series. Van Haren Publishing https:
//books.google.co.za/books?id=kibNywEACAAJ

W3C (2022) Resource Description Framework
(RDF) https://www.w3.org/RDF/ Last Access:
2022-05-02

Ward P. T. (1986) The transformation schema: An
extension of the data flow diagram to represent
control and timing. In: IEEE Transactions on
Software Engineering (2), pp. 198–210

Ware C. (2010) Visual thinking for design. Else-
vier

https://plantuml.com/guide
http://frapu.de/pdf/BPMN20-Wimmelbild.pdf
https://books.google.co.za/books?id=kibNywEACAAJ
https://books.google.co.za/books?id=kibNywEACAAJ
https://www.w3.org/RDF/

