

Designing an Effective Graphical Modelling Language

in Information Systems and Enterprise Modeling

Graham McLeod

Contribution to April Colloquim Raitenhaslach, Bavaria April 2019

Duisburg-Essen University

inspired.org

Outline

Domain of Interest / Research Problem

Graphical Modelling

Stakeholders, Concerns, Goals

Problems

Purposes of Modelling

Opportunities

Scope, Orientation, Situation

Design

Modeling Meaning

Bigger Issues

Communication

Relevance of Research

Organisations are undergoing massive transformative change due to shifts in politics, economy, technology, society, legislation

Business and Society increasingly dependent upon systems and their automation and integration. Evidence: Commercial Information Systems, Digital Transformation, Embedded Systems, IOT, Social Media, Convergence, Machine Learning, Big Data, Analytics, Personal Medicine etc.

Modelling can improve the understanding of current situations, problem solving, design of solutions and decision making as to alternatives and priorities

A huge amount of effort expended on modeling but possible benefits not always achieved. Many reasons, but one which we choose to focus on is the choice of, design of and efficacy of visual languages/ graphical models used in enterprise transformation and information systems

The goal is to improve the return on modeling effort (ROME) by improving ease of use, understanding of models, insights gained and efficiency of usage

A sub-goal is to provide insights into the support required in meta models and tools to achieve the primary goal

The Research Problem

Visual Languages (Concrete Syntax) in Enterprise Modeling and Information Systems are often poorly designed

Arbitrary symbols are chosen without good rationale e.g. UML, Archimate

Notations can be overwhelming, intelligible only to experts with extensive training e.g. BPMN, DEMO

Human cognitive capabilities are not well exploited. Not considered / not using latest research

Models often become large and hide important information e.g. BAIN, ERP Data Models, Application Landscapes

Opportunities for enhancing comprehension, insight and decision making are lost

How can we

Design better visual languages?

Reduce effort in creation and subsequent use of models?

Modify the languages at usage time to improve insights and decision making?

Better exploit the capabilities and overcome limitations of the human visual /cognitive system?

Situating Research

Effectiveness

Defining:

The extent to which models help Stakeholders achieve their purpose with minimum effort and delay

Achieving

Address Domain Concepts

Address Stakeholder Needs/Background/

Questions/Intent

Capture Knowledge

Support Analysis

Communicate / Convince

Tool Support

Community Acceptance

Who?

Image: I23rf//gmast3r

First we need to know who the Stakeholders are

Who has the essential information?

Who will author the models?

Who will review and analyse the models?

Who will approve and publish the models?

Who should be persuaded by the models?

Stakeholder Management Techniques

Freeman, R. E. 1984. Strategic management: A stakeholder approach. Boston: Pitman

Stakeholders and Concerns

And then we need to meet their needs

What is their orientation?

What are they familiar with?

What is their level of literacy wrt models / notation format?

What are their concerns?

Domains

Represent areas of (specialised) knowledge

e.g. Healthcare, Education, Retail, Banking, Manufacturing, Astronomy

They have special vocabularies e.g. Patient, Prescription, Treatment, Formulary etc.

Can enhance speed and accuracy of communication for those in the know

But can be a barrier for those who don't know the language

Why

What is the purpose of the models?

What decisions should they support?

What insights do we wish to obtain?

What should they achieve?

image source: bbc.co.u

Bloom's Taxonomy

Models as Language

Language is uniquely Human

Some say language is what makes us human

It is what allows us to communicate effectively and share goals, thoughts, feelings, ideas, designs...

Language can be spoken, written and drawn

Models represent a powerful kind of language

From Physics of Notation to Grammar of Models

Language

Language

Modelling Language

Graphical Modelling Language A way to communicate between parties

A way to communicate precisely between parties using an agreed vocabulary and grammar

A way to communicate precisely between parties using visual symbols, connectors, containers and their arrangement following an agreed notation, representation and (potentially) layout

Language

Has nouns to communicate about objects and ideas

Adjectives to describe the nature of objects and ideas

Verbs to convey action

Adverbs to modify the action in some way

Proper names and pronouns to identify actors

Connectors to join ideas together

Structure to help users communicate more easily (encoding and parsing)

Punctuation to group, separate and clarify

Image Credit: Cherry Mathew Philipose

User / Language / Purpose

Communication Model

Claude Shannon & Warren Weaver, 1949

Entropy

Redundancy

Noise

Channel Capacity/Bandwidth

What

image source: dragon l.com

What is the domain of interest?

What are the relevant concepts?

How standard are they?

Are there already well accepted models and/or notations?

What questions do we want to answer?

When

Under what conditions will the models be produced?

What constraints are there on time, resources, location, participation, tooling etc.?

How will the models be updated and how much of a requirement is this?

How current must the information be?

Are the models supporting future: Strategy, Architecture, Design?

image source: elpais.com

How

image source: blogsnow.com

Who has the information?

What form is it in?

What is the most effective way to gather it?

How should it be stored, shared, secured?

How should it be analysed, reported, represented, queried?

What notation(s) is(are) appropriate?

What skills are required of the modellers?

Defining Semantics of Domain

We need a semantic layer to express the concepts, properties, relationships, constraints and knowledge of the domain

In a way that captures meaning independent of language, tools and representation

This is essentially a rich data model schema

Hence a competent meta model or semantic model (e.g. OWL) is appropriate

Meta Model Components

Model Management	Stakeholder and Requirements	
	Semantic Model	Instance Semantic Models
	Representation Model	Instance Visual Models
Meta Meta Model and Technology Adaptation		

Combining Domains / Languages

Domains and languages may have overlapping concepts e.g.

Process Models will mention data that is referenced, recorded or updated Goal Models are tied to Organisation Units that are responsible for their achievement Capabilities are linked to Applications which support their achievement

We want a properly resolved semantics that allows sharing data where relevant and using concepts and naming consistently across communities

We thus want a single, extensible meta model that can evolve with new requirements and language requirements

We also need the ability to retain naming from imported models / stakeholder community, hence aliases

MEMO Language Architecture

Ulrich Frank and colleagues Univ Duisburg-Essen

Multiple Perspectives and Layers in MEMO

Ulrich Frank and colleagues Univ Duisburg-Essen

Multiple Overlapping Perspectives

Strategic View

Process View

Application View

EVA Graphical Modeller Tool - inspired.org

Meta Meta Model

Competent technique required to define the Meta Models for the various visual languages

Requires definition of semantics as well as the visual aspects of the language and the mapping between these

Approaches which seem inadequate: UML/MOF, ECore, Eclipse GMF

Approaches which are competent: MEMO MML; Clark(Meta Circular Kernel - used in XModeler); EVA/Inspired; MetaEdit+; Smalltalk plus enhancements

Show Alias

Relationship Types Property Types

Generalise named thing

Ontology

Taxonomy

Views (incl for derivation from different lang.)

antic Meta Model

Rich Data Types

We have found these very powerful in the current EVA Netmodeler tooling

Essentially we implement a base environment (Smalltalk Class) with a predefined protocol and associated interface widgets for composing user interfaces

Relationship Types

Designing Notation

Things to Avoid / Overcome

Poor Communication

Overloading Model Reader

Ambiguity

Wasted Effort

Things to Achieve / Exploit

Leverage Human Capabilities

Facilitate Tool Support

Clarity / Accuracy

Efficiency

Physiology of Human Vision System

Pre-Attentive Processing

(a)

(b)

Pre-attentive processing illustration - {Ware, 2013

BPMN 2.0 "Wimmelbild"

by Frank Puhlmann frapu.de

although this one is produced tongue in cheek, it does illustrate the problem for non-experts!

A "Camouflage" Model

and its just a fragment...

Part of the SAP Project Module

https://www.abaptutorials.com/2014/09/08/ sap-ps-module-tables/

Polymetric Examples in SW Eng.

Figure 5.21: A class blueprint visualization of an inheritance hierarchy with the class *JunColor-Choice* as root class. Each subclass contains a pure *Siamese Twin* pattern.

Information Encoding

Bertin identified 8 variables onto which information can be encoded in a symbol Each has limits of discrimination

Types of Symbols

Туре	Characteristics	Example	Visual Processing Effort	Translation Effort	Design Effort	Acceptable To
Realistic	Reasonably high definition	Photo, Scan	High	Low	Low	All Users
Iconic	Reduced image Recognisable	Road Sign Emoji	Low	Low	High	All Users
Sensory Code	Triggers same visual mechanisms as real objects	Picasso Line Drawing	Low	Low	Very High	Most Users
Arbitrary	Symbol is abstract and meaning must be learnt	Archimate Role	Low	High	Low	Expert Users

Physics of Notation

Moody proposed a Physics of Notation as a scientific model to guide the design of symbols and graphical notations

Semiotic Clarity (1 concept, 1 symbol)

Perceptual Discriminability (easy to tell apart)

Semantic Transparency (easy to identify meaning)

Complexity Management (limit complexity, break up etc.)

Cognitive Integration (guide viewer by e.g. layout, arrows)

Visual Expressiveness (use full gamut of capabilities)

Dual Coding (use graphic complemented by text)

Graphic Economy (only enough notation to convey meaning)

Cognitive Fit (use symbols appropriate to audience/viewer knowledge and skill level)

Cognitive Load

Miller	Limits of short term memory
Ware	Visualisation, Cognition, Awareness
Melamed	Optimisation of Visual Attention, Layout, Navigation Devices etc.
de Kinderen	Comparisons between casual and professional model users

Representation Meta Model

EVA Netmodeler

Layered Tool Architecture

Contribution

Transfer of knowledge from human cognition / visual perception research to visual design in IS languages

Innovation WRT Polymetric Diagramming and techniques to facilitate analysis / insights / rapid query. Transfer from SW Engineering discipline to Enterprise Modeling. (Extension of Physics of Notation concepts)

Meta Model to capture abstractions and facilitate successful tool building

Descriptive (Level 4) Theory building in how modifications to visual models affect users

Prescriptive (Level 5) Theory building ito Guidance to researchers / practitioners on visual language design incorporating modifications to support discovery

Subtle learning from Prototyping and Expert feedback to inform approach and tool building

References

Alturki, Ahmad, Guy G Gable, Wasana Bandara, and Shirley Gregor. "Validating the Design Science Research Roadmap: Through the Lens of "the Idealised Model for Theory Development"." PACIS 2012 (2012):

Bertin, J. Semiology of Graphics: Diagrams, Networks, Maps. Madison, Wisconsin, USA: University of Wisconsin Press, 1983.

BIAN.org. "Banking Industry Architecture Network Services Landscape." (2015): Accessed 9 Jan, 2016. https://bian.org/servicelandscape/.

Caire, Patrice; Genon, Nicolas; Heymans, Patrick; Moody, Daniel L. 2013 Visual notation design 2.0: Towards user comprehensible requirements engineering notations. Requirements Engineering Conference (RE), 2013 21st IEEE International 115-124. Conference proceedings 96

Canil, H. "A Visual Meta-Language for Generic Modeling". Air Force Institute of Technology USA, 2012

Girba, Tudor. The Moose Book. Girba (Creative Commons), 2015.

Lanza, M. (2003). Object-Oriented Reverse Engineering. PhD Thesis Univ of Bern, Switzerland

Moody, Daniel L. "The physics of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering." Software Engineering, IEEE Transactions on 35, no. 6 (2009): 756–79.

Pharo. "The Immersive Programming Experience." (2015): http://pharo.org.

Stein D, Hanenberg S. "Assessing the Power of a Visual Notation". Models 2008

vd Linden D, Hadar I. "Cognitive effectiveness of conceptual modeling languages: Examining professional modelers". Engineering (EmpiRE) 2015

Ware, Colin. Information Visualisation - Perception for Design (3rd Edition). Morgan Kaufmann, 2013.

Zang, K. "Visual Languages and Applications" Springer US, 2008

Camouflage Lion Photo: https://fbcdn-sphotos-c-a.akamaihd.net/hphotos-ak-frc3/971650_533671470011763_1499037240_n.jpg

Code City example: http://www.moosetechnology.org/docs/visualhall

Mondrian Scripting Example: http://www.moosetechnology.org/docs/demos

Researcher: Graham McLeod

≢ graham@inspired.org

make www.inspired.org (Blog there too)

LinkedIn: Graham McLeod

Skype: grahammcleod

Academia: Undergraduate BSc Comp Sc at Unisa, B Comm Hons (IS) at Univ. Cape Town, PhD (incomplete) Univ of Cape Town.

Faculty of Information Systems at UCT for 12 years (1991 - 2003)

Active in industry from 1975 - present. Roles of developer, designer, analyst, project manager, product manager, instructor/lecturer, consultant, architect, entrepreneur, general manager, director, chairman, business owner. Currently Chief Architect / Owner of inspired.org

Major interests: Modeling, Meta Modeling, Methods Engineering, Enterprise and Software Architecture, Business Modeling, Strategy, Tools, Dynamic Languages (Smalltalk)

http://www.travelstart.co.za/blog/wp-content/uploads/2013/11/ Greg-Lumley.jpg

Based in Cape Town, South Africa